Word Sense Disambiguation through Sememe Labeling
نویسندگان
چکیده
Currently most word sense disambiguation (WSD) systems are relatively individual word sense experts. Scarcely do these systems take word sense transitions between senses of linearly consecutive words or syntactically dependent words into consideration. Word sense transitions are very important. They embody the fluency of semantic expression and avoid sparse data problem effectively. In this paper, HowNet knowledge base is used to decompose every word sense into several sememes. Then one transition between two words’ senses becomes multiple transitions between sememes. Sememe transitions are much easier to be captured than word sense transitions due to much less sememes. When sememes are labeled, WSD is done. In this paper, multi-layered conditional random fields (MLCRF) is proposed to model sememe transitions. The experiments show that MLCRF performs better than a base-line system and a maximum entropy model. Syntactic and hypernym features can enhance the performance significantly.
منابع مشابه
Chinese Word Sense Disambiguation with PageRank and HowNet
Word sense disambiguation is a basic problem in natural language processing. This paper proposed an unsupervised word sense disambiguation method based PageRank and HowNet. In the method, a free text is firstly represented as a sememe graph with sememes as vertices and relatedness of sememes as weighted edges based on HowNet. Then UW-PageRank is applied on the sememe graph to score the importan...
متن کاملUnsupervised Large-Vocabulary Word Sense Disambiguation with Graph-based Algorithms for Sequence Data Labeling
This paper introduces a graph-based algorithm for sequence data labeling, using random walks on graphs encoding label dependencies. The algorithm is illustrated and tested in the context of an unsupervised word sense disambiguation problem, and shown to significantly outperform the accuracy achieved through individual label assignment, as measured on standard senseannotated data sets.
متن کاملA Unified Knowledge Based Approach for Sense Disambiguation and Semantic Role Labeling
In this paper, we present a unified knowledge based approach for sense disambiguation and semantic role labeling. Our approach performs both tasks through a single algorithm that matches candidate semantic interpretations to background knowledge to select the best matching candidate. We evaluate our approach on a corpus of sentences collected from various domains and show how our approach perfo...
متن کاملJointly Modeling WSD and SRL with Markov Logic
Semantic role labeling (SRL) and word sense disambiguation (WSD) are two fundamental tasks in natural language processing to find a sentence-level semantic representation. To date, they have mostly been modeled in isolation. However, this approach neglects logical constraints between them. We therefore exploit some pipeline systems which verify the automatic all word sense disambiguation could ...
متن کاملSemEval-2007 Task 18: Arabic Semantic Labeling
In this paper, we present the details of the Arabic Semantic Labeling task. We describe some of the features of Arabic that are relevant for the task. The task comprises two subtasks: Arabic word sense disambiguation and Arabic semantic role labeling. The task focuses on modern standard Arabic.
متن کامل